SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

course litle:	ANALYTICAL CHEMISTRY - INSTRUMENTATION I		
Code No.:	CHM 221-4/		
Program:	Water Resources Engineering Technolog	Jy .	
Semester:	Four		
Date:	June, 1983		
Author:	Doug Heggart		
APPROVED:	New: x Revision	on:	
	Chairperson Date		

CALENDAR DESCRIPTION

ANALYTICAL CHEMISTRY - INSTRUMENTATION I

CHM 221

Course Name

Course Number

PHILOSOPHY/GOALS:

The course is designed to give the student an understanding of the role Instrumentation has in Analytical Chemistry. The course involves theory and laboratory which will serve as a basis for Analytical Chemistry - Instrumentation II taught in semester five.

METHOD OF ASSESSMENT (GRADING METHOD):

Final Grade - Theory

50%

Lab

50%

Theory - Assignments and Quizzes

20%

- Mid-term test

30%

- Final test

50%

Late labs will be marked but will be downgraded 10% per week while late assignments will not be accepted.

TEXTBOOK(S):

Introduction of Chemical Analysis - Braun, McGraw-Hill, 1982

Undergraduate Instrumental Analysis, 3rd Edition, Robinson, Dekker, 1982

TOPIC NO.	TOPIC DESCRIPTION
1	Working Curves and Standards
	 non-linear linear method of standard additions curve fitting - least squares fit Assignment #1 Quiz #1
2	Molecular Spectroscopy
	 review of atomic physics as it relates to EMR development of Beer-Lambert Law criteria for selection of for an Absorption measurement analysis based on light scattering - turbidimetry
	- nephlometry - end point detection using Absorption measurement - determination of Ka using Absorption measurement - Assignments #2 and #3 - Quiz #2 - Mid-Term
3	Atomic Absorption
	- comparison of AAS, AFS, FES, AES - double beam vs. single beam - application - advantages and limitations - interferences - monochromators, detectors - Assignment #4
4	Chromatography
	- types of chromatography- HPLC, GC - Column, Paper - TLC, Ion-exchange - electrophoresis - stationary Phase, Mobile Phase, Carrier Gas - Detectors - Qualitative and Quantitative aspects of G.C retention time and retention volume - efficiency, HETP, n - resolution, symmetry - Column Types - Assignment #5

- LABS: 1. Spectrophotometric a) determination of Fe in H20
 - b) determination of phenol in H20
 - c) determination of pH in H20
 - 2. Potentiometric I a) determination of [HOAC] in H2O
 - b) determination of [H3PO4]
 - 3. Atomic Absorption a) determination of [Ca]
 - b) determination of [Mg]
 - c) determination of water hardness
 - 4. Potentiometric II using Specific Ion Electrodes: a) determination of Cl⁻ in H₂O
 - b) plotting first and second derivative curves

- 5. Optical
- determination of activity
- 6. Chromatography
- a) hydrocarbons in H20
 - b) Qualitative and Quantitative determination
 - c) parameter adjustments